
NOTATION 

L, d, vortex tube length and diameter; dd, diaphragm diameter; Ld, distance between the tangential 
inlet channels and the location of the pressure,  t ransducer ;  Fin, a r ea  of the tangential inlet channels; AP, 
p r e s s u r e  drop in the vor tex  tube; AP'h.f . ,  AP/.I . ,  AP'  E, amplitudes of the low- and high-frequency p r e s s u r e  
fluctuations and the total  p r e s s u r e  fluctuation level;  f/.f.,  fh.f., low- and high-frequency p r e s s u r e  fluctuation 
frequencies;  p, r e la t ive  mass  flow ra t e  of the cooled air;  and ATx, ATg, a i r  cooling and heating effects  in 
the vor tex  tube. 
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The average  and fluctuating incompress ib le  fluid flow cha rac te r i s t i c s  in a c i rcu la r  pipe with blowing 
are  computed on the basis  of a t h r e e - p a r a m e t e r  model of turbulence.  

Investigations of flow in channels with permeable  walls  a re  of in te res t  for the analysis  of heat-  and m a s s -  
t r an s f e r  p r o c e s s e s  in heat pipes when using blowing in the in te res t  of heat shielding and in many other  appl ica-  
t ions.  Computations of the turbulent  flow in pipes with blowing have been pe r fo rmed  in [1, 2] on the basis  of 
mixing-path length models ,  in [3] for the t ransi t ion flow mode, and in [4] for  the hydrodynamical ly stabil ized 
s t r eam by using additional equations for the fluctuating motion.  Flow development along the pipe length is in-  
vest igated in this paper for r e la t ive ly  high Reynolds number of the main s t r e am  at the input for conditions that 
a re  a lmost  r ea l i zed  in exper iments  [5]. 

Solutions for the equations of average  and fluctuating motion have been obtained in the boundary- layer  
theory  approximation valid for m << 1. The fluctuating motion is descr ibed by a t h r e e - p a r a m e t e r  model of 
turbulence,  consist ing of the equations of fluctuating energy balance, turbulent  tangential s t r e s ses ,  and turbulent  
energy dissipation,  descr ibed  in a form close to the models  proposed ea r l i e r  in [6, 7]. The sys tem of equations 
used in the computations for  ax i symmet r i e  s ta t ionary incompress ib le  fluid flow in a c i r cu la r  pipe has the form 
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Fig .  1 F i g .  2 

F i g .  1. A x i a l  v e l o c i t y  d i s t r i b u t i o n  o v e r  the  p ipe  s e c t i o n s :  1) x = 0; 2) 8; 
3) 16; 4) 24; 5) 32. 

F ig .  2.  Change  in the  m o m e n t u m  f lux c o e f f i c i e n t  o v e r  the  p ipe  length:  1) 
Re 0 = 3 .104 ,  m 0 = 0~ 2) 8 .104 and 0.005; 3) 3 . 1 0 4 a n d  0 .012;4)  8 .104  and 
0.012; 5) m 0 = 0.00466; 6) 0.0121. 
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Fig .  3 F ig .  4 

F i g .  3. D e p e n d e n c e  of  the  p r e s s u r e  g r a d i e n t  on the  b lowing  p a r a m e t e r :  1) 
compu ta t i on ;  2) e x p e r i m e n t  [5]. 

F i g .  4 .  T u r b u l e n t  e n e r g y  d i s t r i b u t i o n  o v e r  t he  p ipe  s e c t i o n s :  1) x = 0; 2) 
4; 3) 12; 4) 20; 5) 28; 6) 36. 

Oct Oct kt[l_exp(_~lRez)]E OU~ k E 1 / 2 o  c~av~ 1 0  I O~ ] (V+aaEJ/2L)e, 
ux-~x +Ur Or . Or L L z 4-7"-~- r(v+aaEl/2L)--~ - r 2 " 

(4) 

ux --~OF + u, ~OF = aCJFE OUXor 2cEi/~FL CIF~FL2 "iF 7"--~-fl O L[T(~'-~-C/'FE1/2L)-~fOF ]] , (5) 

The f a c t o r  1 -- exp( - -yReE)  i s  i n t r o d u c e d  to d i m i n i s h  the  c o n t r i b u t i o n  of g e n e r a t i o n  to  the  b a l a n c e  of  
Reyno lds  s t r e s s e s  in the v i s c o u s  s u b l a y e r  r e g i o n .  The s c a l e  of  t u r b u l e n c e  i s  n o r m a l i z e d  in such  a way  tha t  
in the  a b s e n c e  of  b lowing  the  v a l u e  o f  L would  a g r e e  wi th  the  P r a n d t l  m i x i n g  pa th  length  in the  n e a r - w a l l  doamin ,  
i . e . ,  L = 0.4y a s  y --- 0. The c o n s t a n t s  in (3)-(5) have  the fo l lowing  v a l u e s :  v~ E = O~(r = o~ F = 0.2; c = 0.13; CtE = 
0.32; k 1 = 0.2; y = 0.06; k = 0.35; etc r - 1.92; a - 1.7; e l f  = 0.32.  

The b o u n d a r y  cond i t i ons  a t t h e  wal l  and at  the  p ipe  ax i s  have  the fo l lowing  f o r m  for  (1)-(5):  
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The boundary conditions at the inlet to the pipe (x = 0) are determined from the solution of the equation 
for V = 0, i.e., it is assumed that the porous pipe is a continuation of the channel with impermeable walls. 
The factorization method with iteration is used for the computation; the pressure gradient in (2) is eliminated 
here by using the splitting method [8]. 

The distributions obtained for Ux, E and G for V = 0 are in good agreement with the Laufer [9] experi- 
mental results. The distribution of the scale of turbulence over the tube section practically agrees with the 
Prandtl-Nikuradze dependence [I0]. The discrepancy between values of the friction drag coefficient and the 
Filonenko formula [ii] does not exceed 2% in the Range of Reynolds numbers 104 _< Re -< 4.105. 

Results of computations of the axial velocity normalized to its maximal value at the inlet are compared 
with experimental distributions [5] (dashes) in Fig. 1 for Re 0 = 3 �9 104 and m 0 = 0.012. The change in the 
momentum flux coefficient along the pipe length, which characterizes the deformation of the velocity profile, is 

shown in Fig. 2. The course of the change in fi with respect to x agrees qualitatively with the experimental 
data [5] (dashes). The growth of fl on the initial section is related to the diminution in the population of the 

axial velocity profile during adjustment of u x under the effect of blowing from the input distribution correspond- 
ing to the flow for V = 0. Diminution of fl after passage through the maximum is explained by the circumstance 
that the flow becomes quasistabilized and the velocity distribution in each section corresponds to the local 
blowing parameter m, whose value drops along the pipe length. The dependence on the parameter rn obtained 
in the computations for the pressure gradient (Fig. 3) and the friction drag coefficient are in good agreement 
with experimental results [5]. 

The turbulent energy distribution normalized relative to the local value of the mean velocity is repre- 
sented in Fig. 4 for Re 0 = 3 -104 and m 0 = 0.02 over different pipe sections. As in boundary-layer flows on 
permeable surfaces [12-15], under the effect of blowing the fluctuation maximum is shifted somewhat from the 
wall to the stream, and its value increases. In the viscous sublayer domain the degree of turbulence dimin- 
ishes since the fluctuations are forced back from the wall by the blown fluid. The turbulence level is reduced 
in the near-axis zone, which is observed in experiments [15] in a rectangular channel with one-sided blowing. 
The diminution in the degree of turbulence at the center of the pipe is related to stream acceleration because 

of growth of the mass flow rate along the pipe length and is manifested by means of the convective fluctuation 
transport mechanism in the axial direction. The influence of blowing on the Reynolds stress distribution over 
the pipe section and length is the same, with the exception of on the axis, as in turbulent energy. The scale of 
turbulence in the near-wall domain varies negligibly, and diminishes at the core of the stream; an analogous 
effect of blowing on the mixing path length in the boundary layer is experimentally established in [16]. 

NOTATION 

x, r, longitudinal and radial coordinates; Ux, Ur, longitudinal and radial velocity components; p, pressure; 
~, coefficient of kinematic viscosity; E, turbulent energy; G = <U'xU'r} , turbulent tangential stress; F = E3/2/L, 
dissipative function; L, scale of turbulence; r0, pipe radius; U0, mean velocity at the pipe inlet; U = U 0 - 2xV/r0, 
local mean velocity; V, blowing velocity (V < 0); m = V/U, blowing parameter; Re = 2r0U/~ , main stream 

Reynolds number; m0=-V/U0; Re0= 2r0U0/u; Re E = EI/2L/v, turbulent Reynolds number; x = x/r0, r = r/r0, 
I 2 

dimensionless coordinates; and ~=2fux~dT/U2 , momentum flux coefficient. 
0 
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E Q U A T I O N  F O R  T H E  S T R U C T U R E  F U N C T I O N  O F  A T U R B U L E N T  

S T A T I O N A R Y  I S O T R O P I C  V E L O C I T Y  F I E L D  A N D  I T S  S O L U T I O N  

IN T H E  I N E R T I A L  S C A L E  I N T E R V A L  

V .  A .  S o s i n o v i c h  UDC 532.517.4 

A closed equation is obtained for  the s t ruc tu re  function of a turbulent  s ta t ionary  i so t ropic  veloci ty  
field and the equation is solved in the iner t ia l  scale  in te rva l .  

1. A closed equation for the s t ruc tu re  function of a turbulent  i so t rop ic  nonsta t ionary  veloci ty  field is 
obtained in [1, 2]. In this paper ,  we a t tempt  to obtain the s ta t ionary  fo rm of this equation and solve it in the 
iner t ia l  sca le  in te rva l .  

In o rde r  to obtain the s ta t ionary  fo rm of Eq. (22) in [2] for  the s t ruc tu re  function D(r), it is n e c e s s a r y  to 
pass  in this equation to the l imi t  t > ~ and calcula te  the in tegra l  over  the t ime  va r i ab le .  However ,  in so doing, 
it is n e c e s s a r y  to take into account the fact  that the in tegrand on the r ight  side of this  equation depends on t ime  
explicit ly and through the function being sought. The t e m p o r a l  dependence of the function D(r, T) on the r ight  
side of the equation, genera l ly  speaking,  cannot be neglected,  s ince the in tegral  over  ~- is calculated f rom T = 0 
to t --~ r It  is c lear  that for  ~" close to ze ro ,  the functions sought depend s t rongly  on t ime .  However ,  when 
some cer ta in  conditions a re  sa t is f ied,  this  dependence can be neglected and the in tegrat ion over  ~- can be c a r r i e d  
out. We will obtain these  condit ions.  

One of the t e r m s  on the r ight  side of Eq. (22) in [2] can be wri t ten in the fo rm 

i i d'~ k~(p,n, q)(p(p,'~), (1) It co dp ( t  - -  T) s 

0 0 

where k~ is defined by Eq. (28) in [2]; he re  and in what follows, we w i l l u n d e r s t a n d  the symbol  q~ to mean the 
pa r t  of the integrand which depends on T through the functions sought and does not depend on T expl ici t ly .  
Changing the va r i ab le  of in tegrat ion v accord ing  to the equation (t - ~.)-1 = z and using Eq. (28) in [2] for k~, 
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